Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.23.493121

ABSTRACT

Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 and autoimmune disorders, but they target different chemokines than those in COVID-19. Finally, monoclonal antibodies derived from COVID-19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID 19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential.


Subject(s)
COVID-19 , HIV Infections
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.28.489537

ABSTRACT

Variant of concern (VOC) Omicron-BA1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and multiple animal models is urgently needed. Here, we characterized Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in naive hamsters, ferrets and hACE2-expressing mice, and in immunized hACE2-mice. We demonstrate a spike mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In Syrian hamsters, Delta showed dominance over Omicron-BA.1 and in ferrets, Omicron-BA.1 infection was abortive. In mice expressing the authentic hACE2-receptor, Delta and a Delta spike clone also showed dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naive K18-hACE2 mice, we observed Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of both Delta and Omicron-BA.1 replication and pathogenicity. Finally, the Omicron-BA.1 spike clone was less well controlled by mRNA-vaccination in K18-hACE2-mice and became more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.

4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-535930.v1

ABSTRACT

• Background: Late 2019, a new highly contagious corona-virus SARS-CoV-2 has emerged in Wuhan, China, causing within two month a pandemic with the highest disease burden in elderly and people with pre-existing medical conditions. The pandemic has highlighted that new and more flexible clinical trial approaches, such as trial platforms, are needed to assess the efficacy and safety of interventions in a timely manner. The two existing Swiss cohorts of immunocompromised patients (i.e. Swiss HIV Cohort Study (SHCS) and Swiss Transplant Cohort Study (STCS)) are an ideal foundation to set-up a trial platform in Switzerland leveraging routinely collected data. Within a newly founded trial platform we plan to assess the efficacy of the first two mRNA SARS-CoV-2 vaccines that reached market authorisation in Switzerland in the frame of a pilot randomised controlled trial (RCT) while at the same time assessing the functionality of the trial platform.• Methods: We will conduct a multicenter randomised controlled, open-label, 2-arm sub-study pilot trial of a platform trial nested into two Swiss cohorts. Patients included in the SHCS or the STCS will be eligible for randomization to either receiving the mRNA vaccine Comirnaty® (Pfizer / BioNTech) or the Covid-19 mRNA Vaccine Moderna®. The primary clinical outcome will be change in pan-lg antibody response (pan-Ig anti-S1-RBD; baseline vs. three months after first vaccination). The pilot study will also enable us to assess endpoints related to trial conduct feasibility (i.e. duration of RCT set-up; time of patient recruitment; patient consent rate; proportion of missing data). Assuming vaccine reactivity of 90% in both vaccine groups we power our trial, using a non-inferiority margin such that a 95% two-sided confidence interval excludes a difference in favour of the reference group of more than 10%. A sample size of 380 (190 in each treatment arm) is required for a statistical power of 90% and a type I error of 0.025. The study is funded by the Swiss National Science Foundation (National Research Program NRP 78, ‘Covid-19’). • Discussion: This study will provide crucial information about the efficacy and safety of the mRNA SARS-CoV-2 vaccines in HIV patients and organ transplant recipients. Furthermore, this project has the potential to pave the way for further platform trials in Switzerland. Trial registration NCT04805125


Subject(s)
COVID-19 , HIV Infections
SELECTION OF CITATIONS
SEARCH DETAIL